Striped mouse
Journal Article of the Month
Publications
- Maxwell, S. J., Hernandez Duran, L. C., Rowell, M. K., & Rymer, T. L. (2021). An iconography of extant Gibberulus Jousseaume, 1888 (Mollusca, Gastropoda, Strombidae), and the introduction of a new species from the southwestern Pacific. Proceedings of the Biological Society of Washington, 134(1), 89-115.
- Maxwell, S. J., Rymer, T. L., Rowell, M. K., Hernandez Duran, L. C., Berschauer, D. P., Underdown, M., ... & Dekkers, A. M. (2021). Defining and bringing relevance of meaning to species group-level taxa. Proceedings of the Biological Society of Washington, 134(1), 27-28.
- Maxwell, S. J., Watt, J., Rymer, T. L., & Congdon, B. B. (2021). A checklist of near-shore strombidae (Mollusca, Gastropoda, Neostromboidae) on Green Island, Queensland. Biogeographia–The Journal of Integrative Biogeography, 36.
- Delarue, E. M., Kerr, S. E., & Rymer, T. L. (2020). Habitat and sex effects on behaviour in fawn-footed mosaic-tailed rats (Melomys cervinipes). Australian Mammalogy, 43(3), 319-329.
- Duran, L. H., Rymer, T. L., & Wilson, D. T. (2020). Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X, 8, 100063.
- Maxwell, S. J., Congdon, B. C., & Rymer, T. L. (2020). Essentialistic pluralism: The theory of spatio-temporal positioning of species using integrated taxonomy. Proceedings of the Royal Society of Queensland, The, 124, 81-97.
- Maxwell, S. J., Dekkers, A. M., Rymer, T. L. & Congdon, B. C. (2020). Towards resolving the American and West African Strombidae (Mollusca: Gastropoda: Neostromboidae) using integrated taxonomy. The Festivus 52: 3-38.
- Maxwell, S. J., Rowell, M. K., Hernandez Duran, L. C., & Rymer, T. L. (2020). Population structure of'Canarium labiatum'(Roding, 1798)(Mollusca: Neostromboidae: Strombidae) on green Island, Great Barrier Reef, Queensland. Proceedings of the Royal Society of Queensland, The, 128, 15-22.
- Maxwell, S. J., Rymer, T. L., & Dekkers, A. M. (2020). Canarium urceus (Linné, 1758) studies Part 1: The Recircumscription of Strombus urceus Linné, 1758 (Neostromboidae: Strombidae). The Festivus 52 (2): 113-127.
- Maxwell, S. J., Rymer, T. L., Congdon, B. C., & Dekkers, A. M. (2020). Studies in Canarium urceus (Linné, 1758) Part 2: Strombus anatellus Duclos, 1844, Strombus crassilabrum Anton, 1839, Strombus incisus Wood, 1828 and Strombus ustulatus form laevis Dodge, 1946 (Neostromboidae: Strombidae). The Festivus, 52(4), 335-344.
- Rowell, M. K. & Rymer, T. L. (2020). Innovation in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). Animal Cognition 23: 301-310.
- Rowell, M. K., & Rymer, T. L. (2020). Growth and behavioural development of the fawn-footed mosaic-tailed rat (Melomys cervinipes). Australian Mammalogy, 43(3), 330-334.
- Rymer, T. L. (2020). The role of olfactory genes in the expression of rodent paternal care behavior. Genes 11: 292.
- Maxwell, S. J., Bordon, A. V., Rymer, T. L. & Congdon, B. C. (2019). The birth of a species and the validity of hybrid nomenclature demonstrated with a revision of hybrid taxa within Strombidae (Neostromboidae). Proceedings of the Biological Society of Washington 132: 119-130.
- Rowell, M. K. & Rymer, T. L. (2020). Rodentia Cognition. In: Vonk J., Shackelford T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham
- Maxwell, S. J., Dekkers, A. M., Rymer, T. L. & Congdon, B. C. (2019). Recognising and defining a new crown clade within Stromboidea Rafinesque, 1815 (Mollusca, Gastropoda). ZooKeys 867: 1-7.
- Maxwell, S. J., Dekkers, A. M., Rymer, T. L. & Congdon, B. C. (2019). Laevistrombus Abbott 1960 (Gastropoda: Strombidae): Indian and southwest Pacific species. Zootaxa 4555: 491-506.
- Paulling, K., Wilson, D. & Rymer, T. L. (2019). Olfactory recognition of snake cues by fawn-footed mosaic-tailed rats Melomys cervinipes. Behaviour 156: 1235-1253.
- Rymer, T. L. (2019). Parental Investment. In: Vonk J., Shackelford T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham
- Callaway, W. A., Turner, A. A., Croshaw, O. B., Ferguson, J. A., Julson, Z. J.-N., Volp, T. M., Kerr, S. E. & Rymer, T. L. (2018). Melomys cervinipes (Rodentia: Muridae). Mammalian Species 50: 134-147.
- Maxwell, S. J., Congdon, B. C. & Rymer, T. L. (2018). A new species of Paraseraphs (Gastropoda, Seraphsidae) from the Priabonian White Limestone Formation of Jamaica. Paleontological Journal 52: 37-39.
- Maxwell, S. J., Liverani, V., Rymer, T. L. & Congdon, B. C. (2018). A revision of Terebellum delicatulum Kuroda and Kawamoto in Kawamoto and Tanabe, 1956 (Gastropoda, Seraphsidae). Proceedings of the Royal Society of Queensland 123: 61-67.
- Rymer, T. L. & Pillay, N. (2018). An integrated understanding of paternal care in mammals: lessons from the rodents. Journal of Zoology 306: 69-76.
- Maxwell, S. J., Rymer, T. L. & Congdon, B. C. (2017). Sex-ratio bias in Laevistrombus canarium Linné, 1758 (Gastropoda: Strombidae) from Far North Queensland, Australia. Memoirs of the Queensland Museum 60:133-138.
- Pillay, N. & Rymer, T. L. (2017). Behavioural correlates of group size and group persistence in the African ice rat Otomys sloggetti robertsi. Behavioral Ecology and Sociobiology 71:62.
- Pillay, N. & Rymer, T. L. (2017). Preference for Outbreeding in Inbred Littledale’s Whistling Rats Parotomys littledalei. Evoutionary Biology 44:21-30.
- Preece, D.,...Rymer, T. L. et al. (2017). A guide for ecologists: Detecting the role of disease in faunal declines and managing population recovery. Biological Conservation 214:136-146.
- Maxwell, S. J. & Rymer, T. L. (2016). Commercially driven taxonomy: the necessity of knowing species. The Festivus 48: 52-53.
- Maxwell, S. J., Congdon, B. C. & Rymer, T. L. (2016). A new species of Vasticardium (Bivalvia: Cardiidae) from Queensland, Australia. The Festivus 48:248-252.
- Pillay, N., Rimbach, R. & Rymer, T. L. (2016). Pre- and postnatal dietary protein deficiency influences anxiety, memory and social behaviour in the African striped mouse Rhabdomys dilectus chakae. Physiology & Behavior 161: 38-46.
- Rymer, T. L., Pillay, N. & Schradin, C. (2016). Resilience to droughts in mammals: a conceptual framework for estimating vulnerability of a single species. The Quarterly Review of Biology 91: 133-176.
- Delarue, E.M.P., Kerr, S.E., Rymer, T.L. (2015). Habitat complexity, environmental change and personality: A tropical perspective. Behavioural Processes 120: 101-110.
- Pillay, N. & Rymer, T. L. (2015). Alloparenting enhances the emotional, social and cognitive performance of female African striped mice, Rhabdomys pumilio. Animal Behaviour 99: 43-52.
- Mackay, M., Rymer, T. L. & Pillay, N. (2014). Separation at weaning from the family is stressful for naturally group-living, but not solitary-living, male African striped mice Rhabdomys. Stress 17: 266-274.
- Rymer, T. L. & Pillay, N. (2014). Alloparental care in the African striped mouse Rhabdomys pumilio is age-dependent and influences the development of paternal care. Ethology 120: 11-20.
- Rymer, T. L., Thomson, R. L. & Whiting, M. J. (2014). At home with the birds: Kalahari tree skinks associate with sociable weaver nests despite African pygmy falcon presence. Austral Ecology 39: 839-847.
- Hinze, A., Rymer, T. & Pillay, N. (2013). Spatial dichotomy of sociality in the African ice rat. Journal of Zoology, London 290: 208-214.
- Rymer, T.L. & Pillay, N. (2013). Maternal care in the African striped mouse Rhabdomys pumilio: a behaviourally flexible phenotype that is modified by experience. Developmental Psychobiology 55: 265-274.
- Rymer, T. L., Pillay, N. & Schradin, C. (2013). Extinction or survival? Behavioral flexibility in response to environmental change in the African striped mouse Rhabdomys. Sustainability 5: 163-186.
- Chapman, T., Rymer, T. & Pillay, N. (2012). Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris. Naturwissenschaften 99: 893-902.
- Pillay, N. & Rymer, T. L. (2012). Behavioural divergence, interfertility and speciation: a review. Behavioural Processes 91: 223-235.
- Rymer, T. L. & Pillay, N. (2012). The development of exploratory behaviour in the African striped mouse Rhabdomys reflects a gene x enviroment compromise. Behavior Genetics 42: 845-856.
- Rymer, T. & Pillay, N. (2011). Transmission of parental care behaviour in African striped mice, Rhabdomys pumilio. Journal of Experimental Zoology 315: 631-638.
- Rymer, T. L. & Pillay, N. (2011). The influence of the early rearing environment on the development of paternal care in African striped mice. Ethology 117: 284-293.
- Rymer, T. & Pillay, N. (2010). Female mate choice for paternal care behaviour in African striped mice Rhabdomys pumilio: the role of experience. Behaviour 147: 1101-1119
- Rymer, T., Schradin, C. & Pillay, N. (2008). Social transmission of information about novel food in two populations of the African striped mouse, Rhabdomys pumilio. Animal Behaviour 76: 1297-1304
- Rymer, T. L., Kinahan, A. A. & Pillay, N. (2007). Fur characteristics of the African ice rat Otomys sloggetti robertsi: Modifications for an alpine existence. Journal of Thermal Biology 32: 428-432
- Maxwell, S. J., & Rymer, T. L. (2021). Are the ICZN and PhyloCode that incompatible? A summary of the shifts in Stromboidean taxonomy and the definition of two new subfamilies in Stromboidae (Mollusca, Neostromboidae). The Festivus, 53(1), 44-51.
- Rowell, M. K., Pillay, N., & Rymer, T. L. (2021). Problem solving in animals: proposal for an ontogenetic perspective. Animals, 11(3), 866.
- Hernandez Duran, L., Wilson, D. T., Briffa, M., & Rymer, T. L. (2021). Beyond spider personality: The relationships between behavioral, physiological, and environmental factors. Ecology and Evolution, 11(7), 2974-2989.
- Pillay, N., & Rymer, T. L. (2021). Sons benefit from paternal care in African striped mice. Developmental Psychobiology, 63(4), 662-675.
- Rymer, T. L., Cruise, M., & Pillay, N. (2021). Decision-making by bushveld gerbils (Gerbilliscus leucogaster). Journal of Comparative Psychology, 135(2), 244.
- Maxwell, S. J., Rymer, T. L., & Congdon, B. C. (2021). Resolving phylogenetic and classical nomenclature: A revision of Seraphsidae Jung, 1974 (Gastropoda: Neostromboidae). Zootaxa, 4990(3), 401-453.
- Rowell, M. K., & Rymer, T. L. (2021). Exploration influences problem solving in the fawn‐footed mosaic‐tailed rat (Melomys cervinipes). Ethology, 127(7), 592-604.
- Maxwell, S. J., Rymer, T. L., & Watt, J. (2021). Field Notes on Sex-Bias in Gibberulus dekkersi Maxwell, Hernandez Duran, Rowell & Rymer, 2021 (Gastropoda: Neostromboidae: Strombidae) on the Great Barrier Reef. Pacific Science, 75(4), 525-530.
- Rowell, M. K., Santymire, R. M., & Rymer, T. L. (2021). Corticosterone Metabolite Concentration Is Not Related to Problem Solving in the Fawn-Footed Mosaic-Tailed Rat Melomys Cervinipes. Animals, 12(1), 82.
- Maxwell, S. J., Rymer, T. L., & Congdon, B. C. (2021). A theoretical composite model for population sex-specific shell size dynamics in Strombidae (Gastropoda, Neostromboidae). Journal of Natural History, 55(41-42), 2661-2672.
Striped mouse (Rhabdomys pumilio) on the cover of the August edition of Behaviour
Biological news
Wednesday, September 28, 2011
Summary: Sober & Brainard (2009)
Humans use vocal imitation from auditory feedback when learning to talk. Similarly, during the process of imprinting, young birds learn to imitate the songs of adults (tutors) through a reliance on auditory feedback. Initially discordant vocalizations are crystallized into mature song similar to their demonstrator's. During adulthood, humans continue to rely on auditory feedback to correct vocal errors. However, it is unclear whether parallel processes drive the stability of adult vocal behaviour. Sober & Brainard (2009) tested the hypothesis that adult Bengalese finches maintain vocal output by disturbing the pitch (fundamental frequency) of auditory feedback (using custom-designed headphones) and monitoring any resulting vocalization modifications. They predicted that shifts in auditory feedback pitch would cause birds to change their own song pitch in the direction opposite to the imposed feedback. They found that birds use auditory feedback and maintain their song vocalizations through a continual process of error correction. The birds adjusted their song pitch, thereby compensating for the auditory error imposed. Sober & Brainard's (2009) result show that error correction, even in adulthood, is a general principle of learned vocal behaviour.
Monday, September 19, 2011
Summary: Cardoso & Atwell 2011
Some oscines (songbirds) shift to singing at higher frequencies in urban areas (high noise-polluted areas), which has been interpreted as an adjustment to reduce acoustic masking by low-frequency man-made noise. Furthermore, they may also sing louder (i.e. higher amplitude) when exposed to noise and frequency shifting is thought to be less efficient than merely singing louder. Increasing vocalization amplitude in response to background noise is known as the Lombard effect. It has been suggested that high frequency singing might be a physiological consequence of louder singing, rather than just a a functional adjustment to noise. Cardoso & Atwell 2011 tested whether louder oscine songs are sung at higher frequency (central tenet of the hypothesis) using the dark-eyed junco, Junco hyemalis thurberi. The frequency bandwidth of songs and syllables increased with amplitude, involving lower minimum frequency in louder songs and syllables. Therefore, louder singing does not explain the higher minimum frequency of urban dark-eyed juncos. Amplitude and peak frequency were weakly positively related across but not within songs, suggesting that increased frequency is not an obligatory outcome of singing louder. Instead, birds may adjust both amplitude and frequency in response to changing noise or motivation across songs. Their results suggest that adjustments in song frequency and amplitude are largely independent and thus can be complementary rather than alternative vocal adjustments to noise. They discuss oscine vocal physiology and details of the behaviour of urban birds, both of which we argue are consistent with the increased frequency of urban birdsong generally being a functional adjustment to noise, rather than a consequence of singing louder.
Monday, September 12, 2011
Summary: Choi & Bowles (2007)
As in paper:
"Altruism—benefiting fellow group members at a cost to oneself—and parochialism—hostility toward individuals not of one’s own ethnic, racial, or other group—are common human behaviors. The intersection of the two—which we term “parochial altruism”—is puzzling from an evolutionary perspective because altruistic or parochial behavior reduces one’s payoffs by comparison to what one would gain by eschewing these behaviors. But parochial altruism could have evolved if parochialism promoted intergroup hostilities and the combination of altruism and parochialism contributed to success in these conflicts. Our game-theoretic analysis and agent-based simulations show that under conditions likely to have been experienced by late Pleistocene and early Holocene humans, neither parochialism nor altruism would have been viable singly, but by promoting group conflict, they could have evolved jointly."
"Altruism—benefiting fellow group members at a cost to oneself—and parochialism—hostility toward individuals not of one’s own ethnic, racial, or other group—are common human behaviors. The intersection of the two—which we term “parochial altruism”—is puzzling from an evolutionary perspective because altruistic or parochial behavior reduces one’s payoffs by comparison to what one would gain by eschewing these behaviors. But parochial altruism could have evolved if parochialism promoted intergroup hostilities and the combination of altruism and parochialism contributed to success in these conflicts. Our game-theoretic analysis and agent-based simulations show that under conditions likely to have been experienced by late Pleistocene and early Holocene humans, neither parochialism nor altruism would have been viable singly, but by promoting group conflict, they could have evolved jointly."
Subscribe to:
Posts (Atom)